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I. INTRODUCTION

Designs for enhanced resolution of synthetic
aperture radar (SAR) systems have been addressed
in many ways. In [1], the design of a microstrip
antenna architecture was considered for spaced-based
SAR applications. In [2], an innovative Cassegrain
antenna was shown to improve system performance
for space-based SAR systems. In [3], the authors
proposed SAR enhancement by introducing a
three-dimensional modular filtering architecture
in the preprocessing step. In [4], SAR system
performance was improved by the joint specification
and design of the SAR system and platform. Many
other approaches to improving SAR performance
have been considered, including digital filtering
[5], searching by parallel supercomputers [6],
and classification by support vector machines
[7].

To date, little work has been published which
approaches SAR enhancement via aperture
adjustment. Standard SAR employs a 1-D aperture
(a synthetic linear array) and assumes a nominal
flat ground when processing 2-D range/cross-range
images. This removes the range/height ambiguity
simply by not estimating height, resulting in the
so-called layover problem [8, 9]. In [9] and [10]
the layover problem is thoroughly addressed using
cross-track, multibaseline SAR interferometry. In
a sense, this is an aperture adjustment, requiring
the use of multiple antennas, multiple platforms, or
multiple passes. Reference [11] describes a technique
where a curved flight path with sufficient angular
diversity creates a stereo pair in spotlight mode
that is then used to measure scatterer height and
resolve layover. This too is an aperture adjustment
that provides vertical excursion of the radar platform
for scatterer height estimation. By contrast, we
examine the performance of nonlinear flight
paths forming 2-D apertures (sparse synthetic
planar arrays) that decouple the range/height
ambiguity, resolving the layover problem while
providing the potential for 3-D imagery. Unlike
interferometry, this can be done using single-pass,
monostatic SAR without making multiple data
collections. Cramér-Rao bounds (CRBs) do not
depend on the methods or techniques to process
the observation, hence the design is not restricted
to splitting data into stereoscopic components
or spotlighting. In this work we also examine a
3-D synthetic aperture where excursions in the
range and height dimensions can further decouple
the range/height ambiguity and improve overall
performance.

Previous literature describes the use of CRBs for
radar parametric estimation techniques. In [9] and
[12], the authors derive CRBs for the interferometric
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phases to evaluate phase estimation techniques.
In [13], the author computes bounds for various
target parameters, including amplitude, phase
and spatial angle. In [14], CRBs are used to
evaluate spectral estimation methods applied to
curvilinear SAR. In this work we consider the joint
estimation problem, and compute the CRBs for all
parameters given any aperture that is synthesized. We
illustrate that the CRB provides a computationally
efficient means to quantify the influence of SAR
waveforms, flight paths, and scattering models on
the parameter estimation problem. In Section II
we introduce the SAR signal and scattering
models used in simulations. Section III depicts a
mathematical method for computing the CRBs. In
Section IV we describe experimental simulations
that use bounds to compare standard SAR with
multi-dimensional aperture SAR. Finally, conclusions
and future directions of the research are offered in
Section V.

II. SCATTERING AND SIGNAL MODELS

In this work we consider a finite number of
scatterers positioned on a 2-D grid. The centroid of
this grid defines the origin of an (x,y,h) Cartesian
coordinate system, with the grid lying in the (x,y)
plane. Scatterer n is located at cross-range xn, range
yn, and height hn, and at time t the radar platform is
located at (xac(t),yac(t),hac(t)). For the special case of
a 1-D aperture, both yac and hac would be constants,
but for general 3-D apertures all three parameters
are functions of t. Fig. 1 illustrates this coordinate
system.

For each time-frequency sample index (t,!k), with
t 2 f1,2, : : : ,Ntg and k 2 f1,2, : : : ,Nkg the noiseless
received signal s(t,k) is given by

ej!k t ¢ s(t,k) = ej!k t ¢
NX

n=1

janjgn(t,k)

gn(t,k) =
1

R2
n(t)

ej(Án¡¯k2Rn(t))

Rn(t) =
q
¢x2n(t) +¢y

2
n(t)+¢h

2
n(t)

(1)

where ¢xn(t) = xn¡ xac(t), ¢yn(t) = yn¡ yac(t), and
¢hn(t) = hn¡hac(t). Here the summation is over the N
scatterers, Rn(t) is the range from the radar to scatterer
n at time t, and ¯k is the wavenumber for frequency
!k. The complex reflectivity of scatterer n is an, with
magnitude janj and phase Án. We disregard the leading
factors in the first line of (1) in the sequel, as they
are known to the receiver, and the distribution of
the additive noise is invariant to these rotations.
In SAR nomenclature, t indexes the slow-time

Fig. 1. Illustration of coordinate system used in this work. Radar

platform is at position (xac(t),yac(t),hac(t)) relative to centroid of

2-D scatterer grid on (x,y)-plane. For the case of standard SAR

1-D aperture, yac and hac are constants.

positions over the synthetic array and k indexes the

frequency components that synthesize the emitted

pulse in fast-time [17]. Although in practice an
is frequency and aspect angle dependent, we assume

constant, isotropic scattering throughout this

work.

The observation model is

r(t,k) = s(t,k)+ n(t,k) (2)

where the set fn(t,k)g is comprised of independent

and identically distributed complex circular Gaussian

random variables.

We adopt the following vector notation

r= [r(1,1) : : : r(1,Nk) : : : r(Nt,1) : : : r(Nt,Nk)]
T

gn = [gn(1,1) : : :gn(1,Nk) : : :gn(Nt,1) : : :gn(Nt,Nk)]
T

G= [g1 : : :gN]

a= [ja1j : : : jaN j]
T:

(3)

The signal and noise vectors, s and n, are similarly

defined. With this notation, the observation vector

may be represented as

r= s+n

=Ga+n: (4)

III. CRB DERIVATION

The CRB proceeds from the development of

maximum likelihood estimation (MLE) [18]. The

effectiveness of the maximum likelihood procedure

is revealed by computing the variance of the estimate,

a task frequently difficult to perform [19]. However,

a lower bound on the variance is often easier to

compute using CRB. The result not only applies
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to MLE but is in fact valid for any unbiased or

asymptotically unbiased estimator.

For a vector of unknown parameters  , CRB

establishes a lower bound on the error covariance

matrix of unbiased estimates of  [18]. The error

covariance matrix C for the estimator  ̂ is bounded

by the inverse of the Fisher information matrix

(FIM) J,

C= Ef[ ̂¡ ][ ̂¡ ]Tg ¸ J¡1 (5)

where Ef: : :g is the expectation operator, and the

inequality is to be interpreted in the positive-definite

sense. The (i,j)th element of J is computed by

averaging a second-order mixed partial derivative of

the log-likelihood function `,

Jij = E

(
¡

@2

@ i@ j
`

)
: (6)

The ith diagonal element of J is known as the

Fisher information for the parameter  i. The

off-diagonal elements of J, when i 6= j, is called the

cross-information between the parameters  i and  j .

Given statistical independence of the white noise

components, their joint probability density function

has the circular-complex Gaussian form [20] yielding

the likelihood function of the received signal

f(r j s) =
1

(¼¾2
0)
NtNk

e¡(1=¾2
0
)(r¡s)H(r¡s) (7)

where H in the exponent indicates the Hermitian

(conjugate transpose) of the column vector, and ¾2
0=2

is the variance of each in-phase and quadrature white

noise term.

Components of the FIM follow directly from

the Gaussian form of the likelihood function and

the well-known Slepian-Bangs formula [21].

We may concisely present these results if we

define

¨vn
= diag

·
¢vn(1)

Rn(1)
¯1

¢vn(1)

Rn(1)
¯2 ¢ ¢ ¢

¢vn(1)

Rn(1)
¯Nk

¢vn(2)

Rn(2)
¯1 ¢ ¢ ¢

¢vn(Nt)

Rn(Nt)
¯Nk

¸
(8)

where v assumes the parameters x, y, or h. We make

the following approximation

@s(t,k)

@vn
¼¡j

2¯kjanj

Rn(t)
¢vn(t)gn(t,k) (9)

which follows since the derivatives @R¡2
n (t)=@vn are

relatively small in magnitude for all t.

Below denote v and w as two distinct positional

parameters x, y, or h, and ` is the natural log of the

likelihood function in 7. The Slepian-Bangs formula

yields the following FIM components:

E

½
¡

@2`

@janj@jamj

¾
=

2

¾2
0

RefgH
mgng

E

½
¡

@2`

@janj@vn

¾
= 0

E

½
¡

@2`

@janj@vm

¾
=

4jamj

¾2
0

ImfgH
n¨vm

gmg for m 6= n

E

½
¡
@2`

@v2
n

¾
=

8janj
2

¾2
0

gH
n¨vn

¨vn
gn

E

½
¡

@2`

@vn@wn

¾
=

8janj
2

¾2
0

gH
n¨vn

¨wn
gn

(10)

E

½
¡

@2`

@vn@wm

¾
=

8janjjamj

¾2
0

RefgH
n¨vn

¨wm
gmg

E

½
¡

@2`

@Án@Ám

¾
=

2janjjamj

¾2
0

RefgH
n gmg

E

½
¡

@2`

@Án@janj

¾
= 0

E

½
¡

@2`

@Án@jamj

¾
=¡

2janj

¾2
0

ImfgH
n gmg for m 6= n

E

½
¡

@2`

@Án@vm

¾
=¡

4janjjamj

¾2
0

RefgH
n¨vm

gmg:

Fisher information for the uniformly distributed
random phases Án of each scatterer are computed
but treated as nuisance parameters. It was shown by
Gini [22] that assuming knowledge of a parameter
and excluding it in the FIM lowers, or at least has
no affect on, the variance bounds for the remaining
parameters. In this sense, the CRBs for the parameters
of interest are larger when the random phases are
considered unknown and included in J.

A compact description of the FIM for SAR is
achievable by defining

ṽn = 2janj¨vngn

V= [ṽ1 ṽ2 : : : ṽN]
(11)

where ṽn can be x̃n, ỹn or h̃n, and V can be X, Y or H.
Also, we define

©=¡[ja1jg1 ja2jg2 : : : jaN jgN] (12)

and construct the block matrix

M= [X Y H ©]: (13)

Fisher information and cross-information among the
scattering positions and phases are given by the matrix

JxyhÁ =
2

¾2
0

RefMHMg: (14)

The matrix containing information of scattering
magnitudes is

Jjaj =
2

¾2
0

RefGHGg: (15)
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Finally, the matrix P yields cross-information among
the scattering magnitudes and positions and is of
dimensions 4N £N

P=
2

¾2
0

ImfMHGg: (16)

The complete FIM for SAR has order 5N and the
following form

J=

·
JxyhÁ P

PT Jjaj

¸
: (17)

The CRBs for each scatterer are on the diagonal of
J¡1 in the form

diag(J¡1) = [CRBx1 CRBx2 : : :CRBxNCRBy1 : : :

CRByN : : :CRBhN : : :CRBÁN : : :CRBjaN j]

(18)

where CRBqn denotes the CRB for parameter q for the
nth scatterer.

IV. MULTI-DIMENSIONAL APERTURES

The following subsections describe a
computationally efficient method of simulating a SAR
process in order to compute CRBs on the scattering
parameters of interest. First we describe a way to
greatly reduce the number of scatterers modeled
around one scatterer of interest so the effects of
clutter may be examined. We then describe a method
to undersample the aperture and the transmitted
waveform, while averting the effects of grating
lobes. The resulting simulation is used to evaluate
the legitimacy of multi-dimensional apertures and
compare performance with standard SAR processing.

A. Minimized Scattering Model

In this paper we emphasize Ku-band SAR which
might be used on an agile unmanned air vehicle
(UAV) to produce high resolution images. The radar
is assigned the following parameters:

center frequency fc = 16:7 GHz

bandwidth B = 1:67 GHz

synthetic aperture L= 1176 m

aircraft velocity vac = 56 m/s

aircraft height hac = 3000 m

nominal range to target R0 = 6708 m

Based on these values, approximate resolution in
range and azimuth are, respectively, [17]

±r ¼
c

2B
= 0:090 m, ±a ¼

¸R0

2L
= 0:051 m (19)

where c is the speed of light.

Fig. 2. With the target center located, we increase grid size and

examine effects additional scatterers have on its CRB. CRB

asymptotes and minimal number of scatterers N used to replicate

clutter around target is determined.

Typical SAR processing estimates scattering
amplitudes for predetermined locations on a large
patch of ground. The number of estimated positions
of the ground patch depends on the pixel size desired
by the operator. Generally speaking, pixel dimensions
are based on the resolution in range and cross-range
provided by the radar. The image of a large swath
could include millions of scattering measurements.
Thus in many cases the large computational
requirements necessitates off-line formation of the
high-resolution images.

Jointly computing the CRBs for parameters
xn, yn, hn, janj and the nuisance parameter Án of
a single scatterer involves the inversion of a 5£ 5
matrix J. Although a telling exercise, it may be more
informative to observe lower error bounds for many
scattering elements within the desired ground patch.
Thorough analysis of a radar system or the design
of a new system would entail computing CRBs for
millions of scatterers, not just one, i.e., observing
how surrounding clutter affects the CRBs. However,
constructing and inverting such a large FIM is not
feasible using a desktop computer for analysis.

One method to overcome this complexity is to
simply surround a scatterer of interest, hereafter
known as the target, with just enough scatterers to
approach the effects of an infinitely large area of
clutter and yet small enough to limit the size of J.
The number of scatterers needed to meet these criteria
depends, among other things, on the spacing among
the scatterers and their strength relative to the targets,
i.e., the signal-to-clutter ratio (SCR). This number
is determined by computing the CRB for the target
alone and examining the increase in this bound as the
number of surrounding scatterers increases. At some
point the additional clutter no longer influences the
CRBs of the target and an asymptote is reached. We
start by computing the CRB on estimating janj for the
target only. Then we increase the number of cells to a
3£ 3 grid and compute the CRB on estimating janj for
all N = 9 scatterers. Then we increase the cells to a
5£ 5 grid, and then to a 7£7 and so on (see Fig. 2),
computing CRBs for all scatterers.

Fig. 3 shows the CRB for only the target
magnitude as the grid size increase. Spacing among
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Fig. 3. Bound for reflectivity, CRBjaj, is seen to asymptote as

number of scatterers increases (depending on scatterer density).

the cells is tried at 0.20 m and at 0.25 m. We can
see the bound approaches an asymptote at about the
3£ 3 grid size for the larger spacing, and at about the
7£ 7 when the scatterers are more closely spaced. The
difference indicates that target parameters are more
difficult to resolve when the surrounding scatterers
are closer together. For simulations where the effects
of clutter are examined we will construct a 3£ 3 or
7£ 7 depending on the average spacing among the
scatterers. This will create a clutter patch large enough
to replicate an infinitely large area around the target.
The target will likely have the largest CRBs since it
is located among the most dense clutter. Influence
from surrounding scatterers on the target parameter
estimates is inversely proportional to their distance
from the target [16].

B. Undersampled Aperture and Chirp

Typical pulse repetition frequencies (PRF) of
Ku-band SAR are on the order of 1 kHz requiring
tens of thousands of pulses to achieve the desired
resolution. However, in our simulations we show that
the PRF can be substantially reduced. Although the
undersampled, or sparse, aperture causes quasi-grating
lobes in the azimuth dimension, these will not impair
the analysis if they are physically beyond the region
of interest. The sampling rate of the linear FM pulse
can also be reduced to further ease computational
complexity. The pulse sampling rate is minimized
while assuring that quasi-grating lobes in range
dimension are beyond the geometric limits of the
scattering model (§» 0:75 m). Fig. 4 shows the
magnitude response of the white noise matched filter
in the azimuth (a) and range (b) dimensions (given
the operational parameters mentioned above) with a
PRF of 2 pulses/s and a frequency sampling period
of 100 MHz. The first quasi-grating lobes are well
beyond the clutter swath used in the simulations.

The signal-to-noise ratio (SNR) accumulated over
the aperture is selected to be 10 dB. The noise power
is appropriately scaled based on the amount of data

Fig. 4. Magnitude response in cross-range and range dimensions

with first quasi-grating lobes indicated by arrows. Reducing the

PRF to 2 pulses/s and sampling the pulse every 100 MHz

positions the grating lobes beyond the region of interest in this

experiment.

collected and the range to target at broadside,

¾2
0 =

NtNk
SNR ¢R4

0

: (20)

C. Vertical Aperture

Standard SAR range resolution is achieved by
narrowing an uncompressed received pulse that has
sufficient bandwidth. Resolution in cross-range is
achieved with a narrow beamwidth produced over
the synthetic aperture created by linear cross-range
motion. However, as would be expected, introducing
height estimation results in an ill-conditioned matrix
J if some aperture in the vertical dimension is not
included. This is intuitively known and mathematically
satisfied by examining the matrix Jxyh for a single
scatterer,

Jxyh =
2

¾2
0

2
664

x̃H
1 x̃1 x̃H

1 ỹ1 x̃H
1 h̃1

ỹH
1 x̃1 ỹH

1 ỹ1 ỹH
1 h̃1

h̃H
1 x̃1 h̃H

1 ỹ1 h̃H
1 h̃1

3
775 : (21)

Because ¢y1 and ¢h1 are constants and not a function
of t using standard, side-looking SAR, the determinant
of (21) is zero. Another way of stating this is the

correlation coefficient between ỹ1 and h̃1 is unity,

½yh =
ỹH

1 h̃1q
ỹH

1 ỹ1h̃
H
1 h̃1

= 1:0: (22)

In order to reduce ½yh, some variation in ¢h1 is
required. This might lead one to believe that simply
directing the radar platform at some non-zero
angle relative to the ground plane will satisfy the
requirement of both azimuthal and vertical apertures.
Fig. 5 shows a linear flight path adjusted to an
angle ° and the radar’s position relative to a single
scatterer located at ground range ¢y. Note here
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Fig. 5. Linear aperture at angle ° relative to horizon creates

singular FIM Jxyh. Scatterer height cannot be estimated along with

range in this case.

that both ¢x and ¢h are functions of t. However,
further investigation reveals that this FIM is also
ill-conditioned. We again examine the block matrix of

J in (21), and since the factors defined for x̃, ỹ and h̃
are identical in the single scatterer case except for the
geometric differentials, the matrix can be simplified to

Jxyh »

2
64
¢xT

1¢x1 ¢xT
1¢y1 ¢xT

1¢h1

¢yT
1¢x1 ¢yT

1¢y1 ¢yT
1¢h1

¢hT
1¢x1 ¢hT

1¢y1 ¢hT
1¢h1

3
75 : (23)

Looking again at Fig. 5 we see that the height above
the scatterer at any position t along the array is equal
to the current change in height from the original
position on the aperture minus the radar height at
broadside hn(b). Thus we can define

tan(°) =
¢hn(t)¡¢hn(b)

¢xn(t)
(24)

and

tan(Á) =
¢hn(b)

¢yn
: (25)

Then the height at any t is

¢hn(t) = tan(Á)¢yn¡ tan(°)¢xn(t): (26)

Since ° and Á are constants for a linear array, the row
and column associated with ¢h1 in (23) are linear
combinations of the other two rows and columns,
yielding a singular matrix of rank 2. Therefore, not
only is vertical aperture required for height estimation
but some nonlinearity in the aperture formation,
offering spatial diversity in a 2-D plane is also needed.

One method of vertical excursion that achieves a
2-D aperture is a sinusoidal flight path, parameterized
by spatial amplitude Aac, spatial frequency fac,
and phase relative to its broadside position as

Fig. 6. 2-D aperture in form of sinusoidal flight path

parameterized by spatial amplitude Aac and frequency fac.

Fig. 7. Examples of flight paths that employ 1-D, 2-D, and 3-D

apertures.

demonstrated in Fig. 6. Ultimately the 2-D aperture
reduces ½yh and this lower correlation begins to
mitigate the range/height ambiguity, allowing these
parameters to be estimated.

For our simulations we try to maintain nearly
identical distances between array positions when
creating 2-D apertures. This is achieved by
determining the separation distance d between array
positions based on the PRF and the speed of the
aircraft, and using the general formula for computing
the arc length of a function f(x) between consecutive
positions [23] (see appendix)

d =

Z b

a

p
1+ [f 0(x)]2dx: (27)

A third dimension included in the aperture further
enhances performance relative to the 2-D case. We
accomplish this by applying a cosine function to the
flight path in the range dimension (see Fig. 7). This
is analogous to a 3-D curve traced out by a circularly
polarized wave. As a result the correlation coefficients
among the geometric parameters, ½yh, ½xy, and ½xh are
further decreased, subsequently reducing the CRBs for
all parameters of interest.

A question arises as to whether an acceptable
ambiguity function is maintained when the synthetic
aperture includes additional dimensions. Fig. 8(a)—(c)
show the magnitude response for standard 1-D SAR
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Fig. 8. Ambiguity functions for 1-D, 2-D, 3-D apertures. Mainlobes of multi-dimensional cases retain shape similar to that of standard

SAR. (a) Magnitude response for 1-D aperture. (b) Magnitude response for 2-D aperture. (c) Magnitude response for 3-D aperture.

and for the alternate 2-D and 3-D flight paths. It is
evident from these plots that the mainlobe of the point
spread function sufficiently retains its shape, and the
grating lobes are still physically beyond the region of
interest.

D. Comparison of CRBs for Multi-Dimensional
Apertures

Computations were performed on a 7£ 7 cell
grid (49 scatterers) with the target scatterer having
complex reflectivity at located at the center. The
cells are arranged so that their centers are nominally
0.25 m apart. To avoid any irregularity in the results
because of the periodic placement of the scatterers,
their positions within each cell is random, uniformly
distributed in range and cross-range. The limits on
the distribution are 1/4 of the cell spacing so in
this case the closest two scatterers can be to one
another is 0.125 m. This minimum separation is
still greater than the range and azimuth resolutions
according to (19). The heights of all the scatterers
are Gaussian distributed with mean height 1 m and
standard deviation ¾h = 0:125 m. Finally, the real
and imaginary components of scatterer amplitude
are randomly generated using independent, standard
Gaussian distributions. Because the results are so
heavily dependent on the realization, especially the
geometric parameters, the average of a series of
random realizations is computed in the following
experiment. An illustration of one scattering
realization is seen in Fig. 9. The experiment compares
the CRBs of standard 1-D aperture SAR with those of
2-D and 3-D synthetic apertures. The displayed data
are averaged for 200 randomly generated scattering

Fig. 9. Scattering model realization with target in center cell (}),

and clutter randomly positioned within surrounding cells.

realizations. The model for standard SAR assumes
a linear, side-looking flight path and no height
estimation, so from (13) we have

M1-D = [X Y ©]: (28)

Excluding H in the FIM implies that scatterer heights
are known for the 1-D aperture case. As stated
previously, the processing assumes a nominal flat
ground level and thus the CRBs for the remaining
parameters should inherently be smaller relative to
those of the multi-dimensional aperture cases that do
include height estimation.

The number of pulses (total transmitted power)
and aircraft velocity is consistent in all three aperture
models. The 1-D aperture is slightly longer in
azimuth, producing a more narrow beam and thus is
expected to have an even lower CRB for cross-range.
The accumulated SNR is also equivalent for the three
different flight paths, i.e., the average slant range
to the target Rtg(t) over the array positions at t is
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Fig. 10. 1-D (}) and 2-D aperture (¢) labeled with pulse

numbers.

the same for the three apertures. The 1-D and 2-D
apertures are seen in detail in Fig. 10 on geometric
axes with array positions indexed by pulse numbers
(positions along a 3-D aperture are similarly indexed).
Fig. 12(a)—(d) show CRBs for each parameter as a
function of pulse number over the synthetic aperture
formation, correlating to the pulse numbers seen in
the aperture plots of Fig. 10. Log values of the CRBs
allow the three curves to be displayed together for
comparison. The beginning portions of the apertures
do not contain enough data to condition the matrix J,
and thus displayed CRBs start at pulse number 15.

In Fig. 12(a) the CRB for cross-range target
estimation is larger for the 2-D (dashed) and 3-D
(dotted) flight paths compared with standard as
expected. However, the values for the bounds at
the completion of the apertures (43rd pulse) are
all on the order of 10¡4 which is sufficiently small
given the radar cross-range resolution. An ancillary
observation is the smoothness of the curve for the
standard aperture relative to the others. This occurs
because the linear aperture exhibits a more consistent
data collection process that steadily improves SNR
and azimuth resolution. For instance, the 2-D aperture
bounds in Fig. 12(a) decrease sharply after pulse 15
through 22, and then remains flat until pulse 35. This
corresponds to the geometry in Fig. 10 where the
aircraft is not contributing as much to the azimuthal
aperture in the center portion of the plot.

Bounds for range estimates are shown in
Fig. 12(b). Examining the adequacy of range CRBs
we see the standard SAR results in a range CRB of
1:62£ 10¡4 m2, which is clearly acceptable given the
resolution of 0.09 m in range. The 2-D aperture offers
a range CRB of 3:54£ 10¡3 m2, and thus a 95%
confidence interval of 0.119 m. Given that the average
spacing among the scatterers in this model is 0.25 m
(more than twice the range resolution) this is sufficient
to resolve the target in range for any realization. The
3-D aperture yields a notable improvement in the
range CRB compared with the 2-D case.

Fig. 12(c) shows the minimum error variance of
height estimation for the multi-dimensional apertures

Fig. 11. Target (}) and a “laid over” forward scatterer that

inhibits accurate measurements of both magnitudes.

only. The results are correlated with the range error
variances in Fig. 12(b), scaled by a factor of about 3.
Again it appears this bound is reduced by including
range excursion in the aperture.

Examining the results in Fig. 12(d) the average
magnitude CRB is much worse for the standard SAR
case. This is not related to SNR; as stated above the
accumulated SNR for the multi-dimensional paths
equals that of the linear path. The poor average
error variance in amplitude estimates occurs with
standard SAR because a small percentage of the
random realizations result in layover of the target
with an adjacent scatterer. This is worthy of further
investigation into a particular realization where
the 1-D aperture cannot resolve the target from
a nearby scatterer. Fig. 11 shows only the three
relevant scatterers for this discussion, the target at
position (xt,yt,ht), and the adjacent scatterers directly
forward and aft at positions (xfwd,yfwd,hfwd) and
(xaft,yaft,haft), respectively. The placement of the
forward scatterer at a height hfwd happens to have a
broadside range, R0,fwd = 6707:68 m within 0.02 m
of the target broadside range R0,t = 6707:70 m, for
all three apertures. Even at the radar positions for
the first and last pulses (the beginning and end of
the synthetic array), the range to the target and the
forward scatterer are within 0.01 m of each other,
whereas the aft scatterer maintains about a 0.1 m
difference in range. The results from this layover
realization of the target CRBs for the three apertures
are shown below in Table I.

We see that the the range and cross-range bounds
for the 1-D aperture are an order of magnitude worse
than those for the 2-D and 3-D case. Estimation
of magnitude significantly degenerates for the 1-D
aperture since CRBjat j = 37:16. The magnitude
CRB for the forward scatterer is CRBjaj,fwd =
37:11, suggesting that the magnitude of these
scatterers cannot be resolved, whereas for the aft
scatterer CRBjaj,aft = 0:052, suggesting this adjacent
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Fig. 12. CRBs over synthetic aperture formation. Label indicates value of bound when aperture is complete. (a) CRBs for cross-range.

(b) CRBs for range. (c) CRBs for height. (d) CRBs for magnitude.

TABLE I

Cramér Rao Bounds on Cross-Range, Range, Height and

Magnitude Estimates for Various Apertures

Apt. CRBxt CRByt CRBht CRBjat j

1-D 7:32£ 10¡4 1:46£ 10¡3 – 37.16

2-D 7:68£ 10¡5 5:24£ 10¡4 1:90£ 10¡3 0.062

3-D 4:67£ 10¡5 2:75£ 10¡4 9:70£ 10¡4 0.062

scatterer is resolvable. The improvement for the
multi-dimensional aperture cases occurs because
of a decrease in the correlation among a scatterers
reflectivity and the surrounding clutter. The correlation
coefficient between a scatterer’s magnitude and a
different scatterer’s range is

½y,a = Im

(
ỹH
n gmp

ỹH
n ỹng

H
mgm

)
(29)

for n 6=m. For the 1-D aperture the correlation
between the target range and forward scatterer’s
magnitude is ½yt,afwd

= 0:51, whereas the correlation
with the aft scatterer is significantly lower, ½yt ,aaft

=
0:01. For the multi-dimensional 2-D and 3-D apertures
½yt,afwd

= 0:17 and ½yt ,afwd
= 0:24, respectively, which is

higher than normal but still low enough to not affect
the estimators.

Layover may not significantly impact
low-resolution SAR images where only approximate
locations of large buildings, roads, airstrips or other
objects are needed. However, for high resolution
images, layover can critically affect analysis if
attempting to discern details of a small scene or target.
In this case multi-dimensional flight paths, potentially
used with spotlight mode SAR, can provide height
estimation and improved reflectivity measurements.

V. CONCLUSIONS

In this paper we have described a method of
efficiently computing the CRBs for parameters related
to image formation based on a signal model for SAR.
In particular we compute CRBs for the geometric
positions, including height, and magnitude of all
scatterers that are modeled. We then use this method
to illustrate the potential benefits of multi-dimensional
flight paths that permit height estimation and improve
imaging performance by resolving scatterers that
would layover in range bins of adjacent scatterers
using standard SAR processing. The 2-D and 3-D
apertures exhibit this improved performance over a
limited sector of the image plane.

Further work in this area is to develop methods
of optimizing the multi-dimensional apertures
using CRBs. A general optimization process would
minimize the CRBs with respect to a sinusoidal flight
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path parameterized by spatial amplitude, frequency,
and phase. Another method would adaptively optimize
performance by adjusting the flight path when
viewing a particular object or scene.

Future research could include the application of
Cramér-Rao theory to tracking moving targets, in
particular those below clutter [24]. Another possibility
may be to explore the potential of multi-static SAR
using CRBs. The results can offer optimal system
design for cooperative control of multiple sensor
platforms. They can also serve as a reference for
evaluating established or developmental processing
algorithms.

APPENDIX. MAINTAINING EQUAL ARRAY POSITION
SEPARATION FOR A SINUSOIDAL PATH

In general, if f is a smooth function on [a,b], the
arc length from a to b is

d =

Z b

a

p
1+ [f 0(x)]2dx: (30)

Simulating a sinusoidal aperture with a constant PRF
requires equal arc lengths between array positions
along the flight path. In our case the height of the
aircraft varies sinusoidally as a function of uniform
temporal steps, but nonuniform spatial values in x.
That is, if we require the arc length to be

d = vac=PRF (31)

and the aircraft height to be

h(x) = hac +Aac sin(2¼facx) (32)

where hac is the nominal aircraft altitude, we need
to compute values for xt, t= 1, : : : ,Nt that maintain
uniform values of d.

The integral
Z xt+1

xt

q
1+ [2¼facAac cos(2¼facx)]

2dx (33)

is difficult to evaluate analytically. The discrete
version is written

d =

xt+1X

xt

q
1+ [2¼facAac cos(2¼facx)]

2dx

for t= 1, : : : ,Nt¡ 1: (34)

Letting dx equal a small fraction of the spatial period,
dx= 0:001=fac, and by initializing x1 = 0, we can
numerically find the upper limit x2 that satisfies (34),
and continue this process recursively until t=Nt¡ 1.
A spatial phase Áac can also be easily introduced.
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